Publications

Selected Publications

2023

Vu HH*, Behrmann H*, Hanić M, Jeyasankar G, Krishnan S, Dannecker D, Hammer C, Gunkel M, Solov’yov IA, Wolf E# and Behrmann E#. (2023) A marine cryptochrome with an inverse photo-oligomerization mechanism. Nat Commun 14, 6918. doi: 10.1038/s41467-023-42708-2

Mat A, Vu HH, Wolf E, Tessmar-Raible K. (2023) All light, everywhere? Photoreceptors at non-conventional sites. Physiology (Bethesda). 2023 Oct 31. doi: 10.1152/physiol.00017.2023

Giesecke A, Johnstone PS, Lamaze A, Landskron J, Atay E, Chen KF, Wolf E, Top D, Stanewsky R. (2023) A novel period mutation implicating nuclear export in temperature compensation of the Drosophila circadian clock. Curr Biol. 33(2):336-350.e5. doi: 10.1016/j.cub.2022.12.011

2022

Poehn B*, Krishnan S*, Zurl M, Coric A, Rokvic D, Häfker NS, Jaenicke E, Arboleda E, Orel L, Raible F, Wolf E # and Tessmar-Raible K # (2022). A Cryptochrome adopts distinct moon- and sunlight states and functions as sun- versus moonlight interpreter in monthly oscillator entrainment. Nat Commun 13: 5220; doi: 10.1038/s41467-022-32562-z

Zurl M, Poehn B, Rieger D, Krishnan S, Rokvic D , Rajan VBV, Gerrard E , Schlichting M, Orel L, Lucas RJ, Wolf E, Helfrich-Förster C, Raible F and Tessmar-Raible K (2022) Two light sensors decode moonlight versus sunlight to adjust a plastic circadian/circalunidian clock to moon phase. Proc Natl Acad Sci USA, 119(22):e2115725119, doi: 10.1073/pnas.2115725119

2020

Wolf E# and Kramer A# (2020) Circadian regulation: from molecules to physiology. J Mol Biol, 432:3423-3425. doi: 10.1016/j.jmb.2020.05.004

2019

Garg A, Orru R, Ye W, Distler U, Chojnacki JE, Köhn M, Tenzer S, Sönnichsen C and Wolf E (2019) Structural and mechanistic insights into the interaction of the circadian transcription factor BMAL1 with the KIX domain of the CREB-binding protein. J Biol Chem, 294:16604–16619, doi: 10.1074/jbc.RA119.009845.

2015

Merbitz-Zahradnik T and Wolf E (2015) How is the inner circadian clock controlled by interactive clock proteins? Structural analysis of clock proteins elucidates their physiological role. FEBS Letter, 589: 1516-1529. doi: 10.1016/j.febslet.2015.05.024.

2014

Witosch J, Wolf E# and Mizuno N# (2014) Architecture and ssDNA interaction of the Timeless-Tipin-RPA complex. Nucleic Acids Research 2014 Nov 10;42(20):12912-12927. doi: 10.1093/nar/gku960

Schmalen I, Reischl S, Wallach T, Klemz R, Grudziecki A, Prabu JR, Benda C, Kramer A# and Wolf E# (2014) Interaction of circadian clock proteins CRY1 and PER2 is modulated by zinc binding and disulfide bond formation. Cell, 157:1203–1215, doi: 10.1016/j.cell.2014.03.057.

2013

Czarna A, Berndt A, Singh HR, Grudziecki A, Ladurner AG, Timinszky G, Kramer A and Wolf E (2013) Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell, 153:1394–1405, doi: 10.1016/j.cell.2013.05.011

2012

Kucera N, Schmalen I, Hennig S, Ollinger R, Strauss HM, Grudziecki A, Wieczorek C, Kramer A and Wolf E (2012) Unwinding the differences of the mammalian PERIOD clock proteins from crystal structure to cellular function. Proc Natl Acad Sci USA, 109:3311–3316, doi: 10.1073/pnas.1113280109.

2011

Czarna A*, Breitkreuz H*, Mahrenholz CC, Arens J, Strauss HM and Wolf E (2011) Quantitative analyses of cryptochrome-mBMAL1 interactions: Mechanistic insights into the transcriptional regulation of the mammalian circadian clock. J Biol Chem, 286:22414–22425, doi: 10.1074/jbc.M111.244749.

2009

Hennig S, Strauss HM, Vanselow K, Yildiz O, Schulze S, Arens J, Kramer A and Wolf E (2009) Structural and functional analyses of PAS domain interactions of the clock proteins Drosophila PERIOD and mouse PERIOD2. PLOS Biol, 7:e94. doi: 10.1371/journal.pbio.1000094.

Landskron J, Chen KF, Wolf E and Stanewsky R (2009) A role of the PERIOD:PERIOD Homodimer in the Drosophila circadian Clock. PLoS Biology 28;7(4):e3.  doi: 10.1371/journal.pbio.1000003

2008

Hoang N, Schleicher E, Kacprzak S, Bouly JP, Picot M, Wu W, Berndt A, Wolf E, Bittl R and Ahmad M (2008) Human and Drosophila Cryptochromes are light activated by Flavin Photoreduction in living Cells. PLoS Biology 2008 Jul 1;6(7):e160, doi: 10.1371/journal.pbio.0060160.

2007

Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M and Wolf E (2007) A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome. J Biol Chem, 282:13011–13021, doi: 10.1074/jbc.M608872200.

Schöning JC., Streitner C., Page DR., Hennig S., Uchida K., Wolf E., Furuya M., Staiger D. (2007) Autoregulation of the circadian slave oscillator component ATGRP7 and regulation of its target genes is impaired by a single RNA recognition motif point mutation. The Plant Journal 52(6):1119-30, doi: 10.1111/j.1365-313X.2007.03302.x

2005

Yildiz O, Doi M, Yujnovsky I, Cardone L, Berndt A, Hennig S, Schulze S, Urbanke C, Sassone-Corsi P and Wolf E (2005) Crystal structure and interactions of the PAS repeat region of the Drosophila clock protein PERIOD. Mol Cell, 17:69–82, doi: 10.1016/j.molcel.2004.11.022.

2004

Ghosh A, Uthaiah R, Howard J, Herrmann C and Wolf E (2004) Crystal Structure of IIGP1: A Paradigm for Interferon-Inducible p47 Resistance GTPases. Mol Cell 15(5):727-739. doi: 10.1016/j.molcel.2004.07.017

2002

Wolf E, DeAngelis J, Khalil E.M, Cole PA and Burley SK (2002). X-ray crystallographic studies of Serotonin-N-acetyltransferase catalysis and inhibition. J Mol Biol 317(2):215-24, doi: 10.1006/jmbi.2001.5371

1998

Wolf E, Vassilev A, Makino Y, Sali A, Nakatani Y and Burley SK (1998) Crystal structure of a GCN5-related N-acetyltransferase: Serratia marcescens Aminoglycoside 3-N-acetyltransferase. Cell 1998 94(4):439-49, doi: 10.1016/s0092-8674(00)81585-8